Liftoff to Learning:

Video Title:
The Mathematics of Space  Rendezvous Video Length: 17:00 Videos may be viewed using free RealPlayer Click on the highlighted title to see the video using RealPlayer Mathematics Standards: Mathematics as Problem Solving Mathematics as Communication Mathematics as Reasoning Computation and Estimation Algebra Geometry 
Measurement Subjects: The mathematics of spacecraft orbital rendezvous. Description: This program addresses the basic mathematical operations of spacecraft rendezvous in Earth orbit. Middle school students in a mathematics class work to solve some problems that permit the Space Shuttle to rendezvous and dock with the Russian Space Station Mir. The video has stopping points to permit viewers to work the problems as well. 
Background
In a few years, the International Space Station (ISS) will be ready for
fulltime occupancy by crews of astronauts. From their vantage point in
space, astronauts will study Earth's environment and conduct a variety
of scientific and technological experiments that will ultimately help
to improve life on Earth.
One of the critical tasks to the construction and use of a space station
is the ability to rendezvous in space. Consequently, the first phase of
the international Space Station program is a series of Space Shuttle mission
rendezvous and docking activities with the Russian Space Station Mir.
By bringing crew and equipment to Mir, Shuttle astronauts have gained
valuable practice in the maneuvers they will need to work with the ISS.
These maneuvers are complex and docking is a delicate operation. Each
maneuver employs extensive use of mathematics to achieve the objective.
The objective of this video is to invite students to work out some of
the fundamental equations Shuttle crews use for rendezvous. The equations
presented in the video are listed in a following section of this guide.
Some students may become confused with some of the mathematical operations
shown. The video is designed with stopping places for you to work the
mathematics with your students.
One rendezvous concept presented in the video may need some additional
explanation. By firing its rocket engines to increase velocity, the Space
Shuttle actually slows down. Conversely, firing engines to slow down causes
the vehicle to speed up. These paradoxical statements are easier to understand
when you remember that movement in space is a threedimensional problem.
Changes in velocity leads to changes in altitude.
On Earth, rendezvous between two automobiles is a relatively simple operation.
Both drive at specific speeds to arrive at a specific location. When the
automobiles arrive at the right place, they stop. In space, the rendezvous
location is over a specific place on Earth, but it is also at a specific
altitude. When the two spacecraft arrive, they cannot stop. Doing so will
cause them to fall back to Earth. Instead, their rendezvous is at a specific
location and altitude (three dimensions), and at a specific time. Time
is important when you consider that the spacecraft will be traveling at
5 or more kilometers per second. A mere 5second error will cause the
spacecraft to miss each other by 25 kilometers.
The nature of space rendezvous is also complicated by some basic physical
laws. Altitude and velocity of a spacecraft are related. Spacecraft in
low orbits travel very fast because the gravitational pull is strong.
In higher orbits, spacecraft travel slower because the force of gravity
is less. The force of gravity between two objects (Earth and the Shuttle)
is determined by the following mathematical relationship that was first
formulated by Isaac Newton and later modified by Henry Cavendish.
G in the equation is the gravitational constant. The r in the equation
is the distance between the center of Earth and the center of the Shuttle
(not the altitude of the Shuttle over Earth's surface). As you can see,
r has an inverse square relationship in the equation. That means that
the closer the centers of the two bodies are to each other, the greater
the force of attraction. It also means that increasing the distance between
the centers decreases the attraction by an inverse square.
The difference in gravitational attraction with change in distance (orbital
altitude) is where the speedup/slowdown paradox comes in. You must travel
faster in a lower orbit than a higher one to stay in orbit. If you want
to go to a higher orbit, you must fire your rocket engines to accelerate.
The acceleration causes your spacecraft to climb higher above Earth. As
you climb higher, your velocity diminishes until you are traveling at
the right velocity for the higher orbit. It is a slower velocity than
you were traveling before the firing of the engines. In other words, you
sped up so that you could slow down in a higher orbit.
The reverse is true if you want to go to a lower orbit. To descend, you
fire rocket engines in the opposite direction you are traveling. This
causes your spacecraft to slow. Earth's gravity pulls your spacecraft
downward, and, as you fall, your speed increases until you are at the
right speed for the new altitude. Your speed is greater in the lower orbit.
Thus, you slowed down to speed up.
Although somewhat complicated, this paradox helps to accomplish rendezvous.
For example, when the two spacecraft are on opposite sides of Earth from
each other, having one spacecraft in a lower orbit will enable it to close
the distance. In the lower orbit, the spacecraft will not only travel
faster than the higher spacecraft, but the orbit has a smaller circumference
as well. After closing the distance, the lower spacecraft can begin maneuvers
to adjust to the right altitude for the rendezvous. How long to fire rocket
engines, when to do it, and in what directions is determined with mathematics.
Equations Used In the Program  contents 
Number of orbits so that Mir flies over Moscow.
Mir  Moscow = Longitude Distance
Mir's orbital speed.
Distance (circumference) Mir travels during one orbit. (The altitude
is the distance from Earth's center to Mir.)
Mir's orbital speed.
Shuttle speed change needed to raise orbit 7 kilometers. (It is stated
in the video that a change in velocity of 0.4 meters per second raises
the Shuttle 1 kilometer.)
Classroom Activities  contents 
Sine Curve Orbits? Materials: Earth globe Paper Tape Marker Scissors Objective: To show why a sine curve orbital plot is created when an orbit is portrayed on a flat map. Procedure: When shown on a flat map, Space Shuttle orbits resemble sine curves. To show why this happens, wrap and tape a cylinder of paper around an Earth globe. Use a marker pen to draw an orbit around the cylinder. Start with an orbit inclined 28 degrees. Draw the line around the cylinder so that it falls on a plane inclined to the globe's equator by 28 degrees. Remove the cylinder and cut the paper along the line you drew. If you drew the line carefully, the edge of the cut will fall on a plane. Unwrap the cylinder and look at the shape of the orbit. 
Discussion: Orbital maps displayed in Mission Control at the NASA Johnson Space Center show three Space Shuttle orbits at a time. A small Space Shuttle orbiter is displayed on one of the orbits over the geographic position the actual orbiter is flying. The curve of the orbits resembles a sine curve. The steepness of the curve is determined by the angle in which the Space Shuttle was launched in respect to Earth's equator. 
Extension:
Create other cylinders for different orbits such as 35 degrees and 51.6
degrees (orbit of the International Space Station). Compare the steepness
of the curves when the cylinders are flattened.
STS84 Crew Biographies  contents 
Commander: Charles J. Precourt
(Col., USAF)
Pilot: Eileen M,
Collins (Lt. Col., USAF)
Payload Commander, Mission Specialist: JeanFrancois Clervoy
(Ingenieur en Chef de l Armement, ESA Astronaut)
Mission Specialist: Edward T. Lu (Ph.D)
Mission Specialist: Carlos I. Noriega (Major,
USMC)
Mission Specialist, NASAMir 4: Jerry M. Linenger (Capt.,
USN)
Mission Specialist: Elena V. Kondakova
Mission Specialist, NASAMir 5: C. Michael Foale (Ph.D.)
To obtain biographic information, click on highlighted names