FIELD JOURNAL FIELD JOURNAL FIELD JOURNAL FIELD JOURNAL
Anticipating Pathfinder's First Weather Report
by Jim Murphy
June 18, 1997
I've been very busy working on completing the software that's needed
to convert the signals from our wind sensor instrument, onboard the
Pathfinder spacecraft, to wind speed and wind direction.
The wind sensor sits on top of a mast about 3 feet (1 meter) tall.
The mast is currently laying down and will hopefully pop up after Pathfinder
lands. The first measurement should be completed by about 2 p.m. Pacific,
July 4, while the mast is still laying down. We'll take this measurement
just to make sure things are working. Eight hours after we land the
mast should spring to an upright position and we'll start measuring
winds about 3 feet above the ground.
We expect to receive the first real wind information between 6 and
7 p.m., Pacific, July 4. What we expect to find at the Pathfinder site
is based on what Viking Lander saw during a similar season at a nearby
location (Pathfinder's site is about 1000 km (600 miles) from where
Viking landed): winds on the order of 5 - 8 miles per hour. We're not
worried about dust storms because it's the middle of summer on Mars
and the climate suggests that there are not big dust storms during this
time.
Our wind sensor has six wires that are spaced around a cylinder about
the size of a spool of thread. Each of those wires will get hot when
we turn the electricity on. With wind blowing past the cylinder, some
of the wires are going to be in front of it, as it sees the wind, and
some will be behind it. The wires in front of the cylinder will get
cooler than the wires behind it because the wires in front will have
a faster wind going by. By measuring how hot and cold the wires are,
we will get some indication of the wind speed. And by figuring out which
wires are hot and which ones are not as hot, we'll get an indication
of wind direction.
Our main science sampling will occur about every half hour when we
will get about 3 minutes worth of measurements. We'll turn the sensor
on for 3 minutes, collect information and then switch it off. Thirty
minutes later the process will be repeated. Each day we'll get 51 three-minute
samples.
Just because we know the temperature range on Mars, that doesn't immediately
tell us what the wind speed is. We did some testing in a wind tunnel
here at Ames (run by Greg Wilson) where we turned our instrument on
at different wind speeds under conditions that were Mars-like, e.g.
very low pressures. We were able to do the calibration in which we knew
the wind speed and the temperature, so we were able to make a relationship
between the temperature of the wires and the speed of the wind.
The data we got in the tunnel aren't perfect because, as you've probably
experienced, things never go quite the way you plan them. So we also
did our calculations on a piece of paper and that told us what the approximate
temperatures should be. We're now going back and redoing those calculations
to make sure that we have consistency between what we can calculate
using our hand calculator and a piece of paper and a pencil and the
temperatures we saw in the wind tunnel. After that it's just a matter
of finding a straightforward way of taking the temperature and converting
it to wind speed. If we did measurements at 3 meters per second, and
at 5, 10, 20, 35 and 50 meters per second, we could draw a curve through
those points on our plot. We can then try to fit a mathematical equation
to them. So rather than using our eyes to look at every temperature
and then go to our curve and pick out what the wind speed is, we can
use some math to spit out the corresponding wind speed.
The wind-speed data will allow us to see what the winds are at a third
location on Mars compared to what the Viking landers collected 20 years
ago. We'll also be able to compare different weather processes: cold
fronts and warm fronts as they move through an area, winds that flow
up and down valleys, which we saw happening at the Viking Lander 1 site.
We'll also be able to tell if things are different on Mars: if there's
less dust in the atmosphere as some of the recent observations suggest,
and how that affects the weather. We're interested to see if the wind
blows strong enough at the site to lift dust off the ground. We know
there's dust in the atmosphere and we know there are various sites where
dust rises. What we also want to know, is this specific site one of
them?
While Viking measured wind, temperature and pressure, it only measured
the wind and temperature at single points above the surface. On Pathfinder
the wind sensor sits on top of a 3-foot-tall mast from which three wind
socks hang. Pathfinder will give us new information about how wind speed
changes the closer it gets to the surface. The mast also houses three
thermal-couples, or temperature-measuring instruments hung at three
different heights. From this information we will learn how heat is transferred
from the surface vents and also how energy or momentum are transferred
from the atmosphere to the surface. Because the surface tends to drag
on the atmosphere it tends to provide most of the heat input to the
atmosphere.
Understanding the climate and the weather on Mars is an absolute must
before humans can land there. This is easily accomplished by taking
measurements at several different locations. If a spaceship landed on
Earth and measured temperatures in San Francisco, it wouldn't be an
accurate representation of Earth's weather. It's the same on Mars. With
Pathfinder, we'll soon have three points of data collection rather than
two, so we'll have increased our knowledge by 50 percent!
We'll receive our first Mars temperature measurement on July 4 at
7 a.m. My guess is that it'll be 190 degrees Kelvin, which is about
-110 or -120 F. By about 10 a.m. temperatures will start to rise to
205-210 Kelvin. The temperature should peak around 1:30 or 2 p.m. at
about 250 Kelvin. Then the temperature will start to drop fairly rapidly
so that by 6 p.m. it'll be down to 220 Kelvin (-60 degrees F).
There is a much larger daily temperature range on Mars than we see
on Earth. Think about it this way: If you put a small amount of water
in a pot on the stove it heats up quickly. The small amount of water
is Mars' atmosphere. If you put a lot of water in the pot it takes longer
to heat up because there is more water, which is Earth's atmosphere.
I'm really excited about being one of the first people to look at
the data and to realize that things are working and that we are actually
getting a glimpse of what's happening on Mars. I actually got to see
the wind sensor instrument on the spacecraft. I didn't touch it, but
it was within 12 inches of me. What's really going to be exciting is
when the rover drives off the lander and turns around to take a picture
of the spacecraft.